# NAIP 2004

Idaho, Louisiana, Texas Leica ADS40

#### Introduction

- Nebraska 2003 NAIP was the first statewide project completed with the ADS40
  - Results were very favorable
  - Some problems were encountered with the Leica production process
- Nebraska was followed by a statewide Florida contract in 2004 to produce color and false-color 1m ortho for the entire state
  - Results also very favorable
- ► In 2004 an even larger program for the USDA-FSA NAIP program was undertaken:
  - Statewide Idaho and Texas, and a portion of Louisiana

# Project descriptions:

#### Texas:

- Complete statewide coverage
- 17,564 DOQQ's
- 254 Counties
- False color infrared
- 1m resolution
- June 1st to September 15th acquisition window (project divided into 4 areas with different dates per area)
- Extended to November 21st.

#### Idaho:

- Complete statewide coverage
- 6,522 DOQQ's
- 44 Counties
- Natural color
- 1m resolution
- June 1st to August 30th acquisition window
- Start delayed 2 weeks due to late spring, extended to October 1<sup>st</sup>.

#### Louisiana:

- Partial statewide coverage
- 1143 DOOO's
- 20 counties
- Natural color
- 2m resolution
- June 25th to August 30th acquisition window
- Extended to October 1<sup>st</sup>.

## Project team:

- ► Team comprised of 3 companies (North West, EarthData, Horizons)
  - Technically NWG is the prime with EarthData and Horizons as subcontractors but we all view this as a "team" effort
  - Leverage skills/capacity/R&D instead of duplicating efforts
  - This team has extended beyond NAIP on many other projects
- 4 Cessna Conquest propjet aircraft
  - High performance aircraft
  - Reliable proven performance for NAPP/NAIP projects
- ▶ 1 King Air 200 aircraft (Leased)
- Various twin engine piston aircraft
- 6 ADS40 sensors
  - 4 FCIR capable at start of season
  - 5 FCIR capable now
- > 300+ combined staff
  - Maryland, South Dakota, Calgary (Canada)

# Flight layout

- We fly NAIP production differently than film based acquisition
  - Line spacing is optimized to deliver 0.90m capture resolution
  - Line spacing for Texas was 5 minutes, Idaho was 6 minutes
  - This represents a savings of 33% and 60% respectively
- ► This is possible as the interference filters of the ADS40 are more tolerant of poor atmospheric conditions than film
- The comments that aircraft to fly above 24,000 feet are not common for NAIP is correct but:
  - ADS40 is almost 3X the cost of a film camera.
  - Putting a expensive sensor in a aircraft that limits the sensors efficiency doesn't make sense
  - We are seeing 2 to 3 times the utilization out of our digital sensors over our film cameras
  - With better performing aircraft comes mobility to jump across the US to chase weather
  - Safety also becomes a factor
- As NAIP grows this is very important:
  - It's not possible to deploy 5+ aircraft in a typical state due to ATC traffic issues
  - With poor weather in SE states we need to get as much data per hour of flight-time as possible
  - This also helps with processing volumes

#### Processing infrastructure:

- Last year Leica GPro proved to have several weaknesses
- ► Working with Leica over the past 6 months many of these have been addressed (APM)
- Several custom processes were developed to address the remaining shortcomings in the workflow

#### Processing infrastructure:

- Processing capacity is a large concern with digital sensors:
  - Often the processing infrastructure equals or exceeds the sensor in terms of cost
  - Dedicated IT staff to keep the infrastructure operating
  - Data management is a very real issue
  - Off the shelf solutions not available
- ► Two sizable processing centers (IStar and Leica GPro):
  - IStar cluster:
    - ► Located at EarthData, Frederick Maryland
  - Leica GPro cluster:
    - ► Located at NWG, Calgary Alberta Canada
- Cross compatibility of the workflows helps leverage all processing resources

# Pre-acquisition processing:

- Goal is to get as much of the ground work in place before data to process.
  - Picking control from USDA provided MDOQQ's
  - Preparing DEM into required format for processing infrastructure
  - Building shapefile indexes from USDA provided scan lists, county DOQQ lists, etc.
  - Adding processing resources based on contract award (disk capacity, backup capacity, Mr. Sid cartridge capacity)
- Due to very large contract awards this information was late in arrival
- We had data waiting to process but could not finalize due to a lack of control
- Prompt reference material delivery is important
- Delivery of CLU's would be a big benefit
  - Vector data means quicker delivery
  - Allows in depth QC by overlaying over new DOQQ's

#### Idaho data acquisition:

- Idaho data acquisition went smoothly but the weather patterns limited production greatly
- During good weather patterns up to 4 aircraft operating in Idaho
- Lost 1 week due to smoke issues
- Idaho acquisition 100% completed on September 27<sup>th</sup>
- Average 75 DOQQ's/day, in 2002 averaged 180 DOQQ's/day
- Over 7.5Tb of sensor data was collected

## Idaho data processing:

- Idaho was divided into 38 sub-blocks for aerial triangulation and ortho production
- On average 6 to 8 blocks were processed per week
- ► The high relief terrain did slow this progress to 3 to 4 blocks due to DEM issues
  - DEM issues also hurt accuracy
- ▶ 100% Idaho processed
- Waiting on inspection to complete but preliminary results are promising

#### Idaho product accuracy:

- 600 check points were identified from the reference MDOQQ's provided
- These points are measured in the final DOQQ's to assess accuracy
- DEM was an issue in some high relief areas
- Break-lines compiled and DEM edit done to mitigate these problems

|         | X     | Y     |
|---------|-------|-------|
| Max (m) | 6.344 | 4.153 |
| RMS (m) | 2.152 | 2.071 |



#### Louisiana data acquisition:

- Louisiana data acquisition was difficult due to very poor weather in the south eastern US
- Record rainfalls and tropical storm activity
- Extensions granted until November 1<sup>st</sup>
- Averaged 82 DOQQ's/day
  - Largely due to standby in TX
- Louisiana acquisition 95% completed on October 30<sup>th</sup>
- ▶ 1.5Tb of sensor data was collected

## Louisiana data processing:

- Louisiana was divided into 7 sub-blocks for aerial triangulation and ortho production
- ► All blocks were processed in one week (flat is fast!)
- ► 1m product delivered to USDA instead of 2m product for no additional charge
- Louisiana processing 100% complete
- ► All deliverables to be submitted this week

## Louisiana product accuracy:

- 121 check points were identified from the reference MDOQQ's provided
- These points are measured in the final DOQQ's to assess accuracy
- Results are similar to those achieved in 2004 Florida statewide USGS contract

|         | X     | Υ     |
|---------|-------|-------|
| Max (m) | 2.734 | 2.237 |
| RMS (m) | 1.882 | 1.816 |





### Texas data acquisition:

- Texas data acquisition was difficult due to very poor weather
- Record rainfalls in Texas this year
- ▶ Up to 5 aircraft operating based on weather patterns
- 2+ aircraft have been on location since June
- ~172 days on site, 26 flying days
- Some issues with ATC due to high traffic loads and airlines fighting for smooth air around storm systems
- Extensions granted until November 21st to complete acquisition
- Majority of the production (55%) has been accomplished since September 15<sup>th</sup>
  - This is after the original acquisition end date
- ► Texas acquisition 86% completed on November 15<sup>th</sup>
- Averaged 48 DOQQ's/day
- ▶ 18.1Tb of sensor data collected to date
- Comment yesterday by Kodak on flight acquisition needs clarification:
  - Oklahoma was a June 1<sup>st</sup> 30<sup>th</sup> flight window.
  - NE Texas was a August 1<sup>st</sup> 30<sup>th</sup> flight window.
  - Texas NE easily would have been completely flown if acquisition window opened June 1st like Oklahoma
  - Perhaps we need to talk to AGFA about our teams film requirements?

### Texas data processing:

- Due to the late acquisition processing being done in parallel at EarthData and NWG to speed up delivery to USDA
- Texas is divided into 105 sub-blocks for aerial triangulation and ortho production to date
- On average 15 to 18 sub blocks are being processed per week when data available
- One bottleneck is that some sub blocks are only a few DOQQ's due to poor weather limiting acquisition to short missions

# Texas processing status:



## Texas product accuracy:

- ► To date internal accuracy analysis shows results similar to Louisiana
- External checks by State verifies these accuracies (Gordon Wells)
- Eventually over 6000 check points will be analyzed



## Additional sales opportunities:

- Addition sale in Texas to the International Boundary and Water Commission:
  - This was for natural color 1m ortho
  - 699 ortho tiles in total
  - 393 from USDA NAIP contract, reprocessed
  - 306 additional tiles in Mexico added to the flight acquisition
  - New 5m DSM surface in Mexico created using the IStar correlation process
  - To be delivered after the USDA NAIP program acceptance

# Sales opportunities (continued)

- Currently pursuing sales of several Texas counties re-processed to a natural color product
- Also opportunity of a Texas state-wide compressed format
  - ECW compression 18:1 due to some concerns over quality of 50:1 Mr. Sid product
- Pursuing interest in a re-processed false-color product in Idaho
  - Potentially statewide

#### Online sales!

- All data for Texas, Idaho, and Louisiana will be online for resale via our www.valtus.com online web portal after USDA approval
- Data in a JPEG-2000 lossless format
- Sales per DOQQ or custom cropped area via FTP download
- Subscription based service for direct use in any Arc 8.3 or later application (via web map services and ArcXML)
- www.valtus.com is a fully redundant spatial data web portal that is mission-critical to the top oil and gas companies
- Currently serving 1m ortho of Alberta and BC Canada:
  - 4000+ desktop subscriptions access this imagery via ESRI applications
  - 70,000 images a day
  - In operation since 2001
- Data cross sales agreements with several other spatial data portals
  - More sales channels the better as long as consistent pricing

#### Potential issue?

- ► RVSM becomes a issue in January 2005
  - Already in place in Canada since January 2004
  - No flights above 29,000 ft without upgraded avionics
  - This will push traffic down to below 29,000 ft
  - This will congest the airspace NAIP is typically flown
  - More ATC issues to deal with

### Possible Improvements?

- ► The NAIP timeframe for Texas data acquisition (and the SE states in general) does not fit the traditional good weather season
  - Majority of production occurred <u>after</u> the NAIP original season ended (55%)
  - approximately 6 times that of Idaho
- Extensions are very welcome, but better understanding of absolute cutoff dates would help drastically

## Improvements?

- Investigate other compression technologies worthwhile?
  - MG3, ECW, JPEG-2000?
- If MG3 or tile based for CCM's we can deliver much faster
  - Partial submissions and update later
- Other possible delivery formats?
  - Direct over web for preliminary CCM's?
- Advance notice over states to be flown would help to allow marketing efforts to find additional sales opportunities to help subsidize NAIP pricing
- Some reporting mechanism for areas with poor DEM to allow future updates

#### Our plans for next/future year:

- ▶ Work on improved automation of the workflow:
  - Ultimately want to transition to 'lights out' production with only human finishing, QA, QC
  - Pushbroom concept of ADS40 allows this level of automation
  - IStar is already ahead in this regard
- Increased processing capacity:
  - Handle additional ADS40 sensors
  - Better parallelization critical to this effort

# Our plans (cont):

- ► More acquisition capacity
  - Planes, Sensors
- ► Focus on alternative products possible with the ADS40 to find other sale opportunities
- Exploit web sales as much as possible

#### Is film dead?

- Our first ADS40 turned 2 years old yesterday!
  - In these 2 years is has flown over 1000 hours of 'on' time
  - This is 2.5X greater than our average yearly usage of our RC30 cameras, when installed in the same aircraft servicing the same clients
  - This increase is purely due to more work, better efficiency, and extended flight times
- According to Leica the ADS40 is outselling the RC30
  - I believe Z/I would have a similar situation
- No significant R&D on film
  - Cameras, film processing equipment, or film emulsions
- This year ALL major projects have permitted digital sensors
  - Actually, a few very large projects have specifically not allowed film based solutions
- Ultimately it's our clients that decide when film dies
  - Film is dying much quicker than we anticipated
  - We're not happy, we own a full service lab (B&W, color, and FCIR)
  - Anyone want to buy a 1611 Versamat?

#### Questions?

► Thank you to the USDA-FSA allowing us the opportunity to present today

- Any questions?
  - John.welter@nwgeo.com
  - cbarnard@earthdata.com
  - Ideibert@horizonsinc.com